Isoclinism and Stable Cohomology of Wreath Products
نویسندگان
چکیده
Using the notion of isoclinism introduced by P. Hall for finite p-groups, we show that many important classes of finite p-groups have stable cohomology detected by abelian subgroups, see Theorem 4.4. Moreover, we show that the stable cohomology of the n-fold wreath product Gn = Z/p o · · · oZ/p of cyclic groups Z/p is detected by elementary abelian p-subgroups and we describe the resulting cohomology algebra explicitly. Some applications to the computation of unramified and stable cohomology of finite groups of Lie type are given.
منابع مشابه
Algebraic structures behind Hilbert schemes and wreath products
In this paper we review various strikingly parallel algebraic structures behind Hilbert schemes of points on surfaces and certain finite groups called the wreath products. We explain connections among Hilbert schemes, wreath products, infinite-dimensional Lie algebras, and vertex algebras. As an application we further describe the cohomology ring structure of the Hilbert schemes. We organize th...
متن کاملBases for certain cohomology representations of the symmetric group
We give a combinatorial description (including explicit differential-form bases) for the cohomology groups of the space of n distinct nonzero complex numbers, with coefficients in rank-one local systems which are of finite monodromy around the coordinate hyperplanes and trivial monodromy around all other hyperplanes. In the case where the local system is equivariant for the symmetric group, we ...
متن کاملThe Farahat-higman Ring of Wreath Products and Hilbert Schemes
We study the structure constants of the class algebra RZ(Γn) of the wreath products Γn associated to an arbitrary finite group Γ with respect to a basis provided by the conjugacy classes. A suitable filtration on the RZ(Γn) gives rise to the rings GΓ(n) with non-negative integer structure constants independent of n, which are then encoded in a single (Farahat-Higman) ring GΓ. We establish vario...
متن کاملRestricted cascade and wreath products of fuzzy finite switchboard state machines
A finite switchboard state machine is a specialized finite state machine. It is built by binding the concepts of switching state machines and commutative state machines. The main purpose of this paper is to give a specific algorithm for fuzzy finite switchboard state machine and also, investigates the concepts of switching relation, covering, restricted cascade products and wreath products of f...
متن کاملUniversal rings arising in geometry and group theory
Various algebraic structures in geometry and group theory have appeared to be governed by certain universal rings. Examples include: the cohomology rings of Hilbert schemes of points on projective surfaces and quasiprojective surfaces; the Chen-Ruan orbifold cohomology rings of the symmetric products; the class algebras of wreath products, as well as their associated graded algebras with respec...
متن کامل